eGospodarka.pl

eGospodarka.plWiadomościGospodarkaRaporty i prognozy › 5 powodów, dla których retail potrzebuje Big Data

5 powodów, dla których retail potrzebuje Big Data

2018-06-08 11:44

5 powodów, dla których retail potrzebuje Big Data

Big Data © photon_photo - Fotolia.com

Żyjemy w czasach rekordowo dużej ilości danych i wszystko wskazuje na to, że tendencja wzrostowa towarzyszyć nam będzie również w latach kolejnych. Nie jest zatem niczym zaskakującym, że technologia Big Data i analityka danych święcą dziś triumfy. Zwłaszcza że mogą one przynosić wymierne korzyści. Dobrym przykładem jest branża retail. Z badania zleconego The Economist Intelligence Unit przez Wipro wynika, że aż 64 proc. respondentów reprezentujących ten sektor jest przekonanych, że wdrożenie Big Data powiększyło ich zyski w zakresie zarządzania relacjami z klientami, a ponad połowa mówi o skoku sprzedaży. Korzyści odczuwalne są również dla samych klientów.

Przeczytaj także: Analityka danych w retail to już konieczność?

Big Data, wielkie oczekiwania


To, o czym mówi badanie The Economist Intelligence Unit, znajduje swoje potwierdzenie w badaniu JDA Software Group i PwC. W tym przypadku aż 86 proc. przebadanych menedżerów z sektora retail przyznało, że w ciągu nadchodzących 12 miesięcy technologia Big Data to jeden z priorytetów w strategiach biznesowych ich firm. Co powoduje, że Big Data tak bardzo zyskała na znaczeniu nie tylko w branży retail, ale również w szerzej rozumianym handlu?

Dostęp do globalnej sieci mają dziś już przeszło 4 mld osób na całym świecie. To owocuje ogromnymi możliwościami w zakresie gromadzenia i przetwarzania masowo generowanych przez nich danych. Wraz z opracowaniem metod analizy zbieranych informacji odkryto potencjał Big Data w odkrywaniu wzorców zachowań osób kupujących online, których z roku na rok przybywa. Jednak analiza kluczowych haseł wpisywanych w wyszukiwarki, by zdobyć informacje o tym, jakich towarów poszukują konsumenci w sieci, a także poza nią, przestała być efektywna. Jak zaznacza Krzysztof Grabowski, ekspert ds. technologii, rozwój branży IT, korzystanie przez konsumentów ze smartfonów, (jak szacuje Zenith, w tym roku będzie to już 2/3 populacji), tabletów, smartwatchów i innych urządzeń, które mają połączenie Internetem, a także ich obecność w mediach społecznościowych, gdzie mają stały kontakt z ulubionymi markami, każdego dnia generuje masowe ilości danych.
Analiza zachowania konsumentów w dzisiejszym, cyfrowym świecie stanowi zupełnie nowy poziom pracy z danymi. Dzięki informacjom pozyskiwanym z „inteligentnych” urządzeń, które są również „uzbrojone” w technologię GPS, mediów społecznościowych i innych śladów pozostawionych przez klientów w sieci (np. ich historia zakupowa czy opinie o markach umieszczane na forach internetowych), obecnie możliwa jest analiza reakcji nie tylko wybranych grup klientów, ale nawet konkretnych osób. Takie podejście nazwano indywidualizacją, a tworzenie oferty zakupowej na podstawie wniosków wyciągniętych z wcześniejszych kontaktów danego konsumenta z marką – personalizacją – dodaje Grabowski.

Dzięki zindywidualizowanemu podejściu do analizowania zachowania konsumentów, oprócz takich kwestii jak, co i kiedy kupujemy, możliwe stało się również zbadanie, w jaki sposób dokonujemy zakupów.
– Wiedza o tym, w jaki sposób klienci podejmują decyzje zakupowe, impulsywnie, emocjonalnie, czy też w przemyślany i racjonalny sposób, pozwala markom przewidywać, i to coraz częściej w bezbłędny sposób, przyszłe działania konsumentów – zauważa Krzysztof Grabowski, ekspert ds. technologii.

fot. photon_photo - Fotolia.com

Big Data

Analiza Big Data wspiera e-commerce i działania marketingowe prowadzone przez firmy w Internecie, ale nie tylko.


Big data in store


Analiza Big Data wspiera e-commerce i działania marketingowe prowadzone przez firmy w Internecie, ale nie tylko. Również te marki, które postawiły na sprzedaż stacjonarną, zbierają i analizują cenne informacje o swoich obecnych i potencjalnych klientach pozostawione przez nich w sieci. Media społecznościowe, aplikacje zakupowe, ruch na oficjalnej stronie www danego brandu, czy reakcje konsumentów na reklamy internetowe, są cennym źródłem informacji dla branży handlu detalicznego. W ostatnim czasie coraz więcej firm decyduje się na zbieranie danych o swoich klientach bezpośrednio w punktach sprzedaży.

Tylko podczas jednej wizyty w sklepie każda osoba jest w stanie wygenerować wiele unikatowych wskaźników, które są zbierane np. czujniki i kamery rozmieszczone w punkcie sprzedaży. Gdy zostaną odpowiednio skategoryzowane, a następnie przeanalizowane, dostarczają informacji o tym, co przyciąga klientów do sklepu danej marki, na jakie towary zwracają szczególną uwagę, ile czasu zajmuje im dokonanie wyboru i jak go dokonują, oraz jaką metodę płatności wybierają najczęściej, czyli po prostu o tym, jak wygląda ich cała ścieżka zakupowa.
– Zbieranie informacji o klientach, którzy osobiście zrobili zakupy w sklepie, dla marek z branży retail może być bardziej wartościowe niż tylko opieranie się na aktywności konsumentów w sieci, ponieważ w tym pierwszym przypadku dochodzą dodatkowe czynniki, które można wziąć pod uwagę w analizach kupujących. Są to np.: mimika klienta, jego reakcja na poszczególne produkty i sposób ich ustawienia w sklepie, nawet na występujące w nim oświetlenie, czy zapach, reakcja na obsługę i inne elementy, które wpływają na to, czy klient dokona zakupów w danym punkcie lub też nie i czy w ogóle powróci do niego w przyszłości – wyjaśnia Krzysztof Grabowski, ekspert ds. technologii.

5 najważniejszych powodów, aby zainteresować się Big Data


Dzięki połączeniu odpowiednich metod zbierania i analizowania zgromadzanych informacji, firmy z branży handlu detalicznego z dużym prawdopodobieństwem mogą określać, co kupią klienci, odwiedzając dany sklep w przyszłości. Ale to nie jedyne korzyści, na które można liczyć, wdrażając technologię Big Data:
  1. Profilowanie klientów i przygotowywanie dla nich spersonalizowanej oferty produktowej. Chociaż każda firma wchodząca na rynek powinna zacząć swoją działalność od określenia grupy docelowej, do której chce dotrzeć ze swoimi produktami lub usługami, to czasami dopiero analiza zachowania i historii zakupowej konsumentów pozwala odpowiedzieć na pytanie, kto właściwie jest klientem danej marki, czy nawet jej jednego wybranego sklepu. Poznanie tych informacji pozwoli na przygotowanie dla nich spersonalizowanej oferty produktowej, a także na efektywniejsze dopasowanie stosowanych narzędzi marketingowych. Takie działania prowadzą do zwiększenia zysków ze sprzedaży i zdobycia lojalnych klientów.
  2. Prognozowanie trendów na długo przed ich nadejściem, czyli efektywnie kierowanie popytem oraz łańcuchem dostaw. Regularna analiza zachowania klientów, a dokładniej skupienie się na tym, jakie produkty chętnie wybierają, a na które nie zwracają w ogóle uwagi, pozwala nie tylko z odpowiednim wyprzedzeniem przewidywać trendy, co ma znaczenie np. w branży modowej. Określenie popytu umożliwia również zaplanowanie dostaw asortymentu do sklepu w odpowiednim czasie, czyli np. wyeliminowanie strat finansowych z powodu niesprzedanego towaru, jeżeli nie spotka się z zainteresowaniem kupujących. Prognozowanie trendów rynkowych pozwala na zachowanie przewagi konkurencyjnej, ale również przewidzieć spadki koniunktury i tym samym dopasować prowadzone działania biznesowe do aktualnej sytuacji na rynku.
  3. Zwiększenie sprzedaży wybranego asortymentu lub/i zyskanie lojalnej grupy klientów. Jak to się robi, pokazała amerykańska sieć hipermarketów Target. Analizując zachowanie wybranej grupy klientów – kobiet, a także to, jak okresowo zmienia się jej koszyk zakupowy, firma opracowała metodę rozpoznawania kobiet w ciąży. Zebrane dane nie tylko pozwoliły określić, co najczęściej kupują przyszłe matki, ale nawet przewidywany termin porodu, a co za tym idzie, przygotować spersonalizowaną ofertę produktową dla klientek, które rozpoczęły nowy etap życia i zmieniły swoje potrzeby zakupowe.
  4. Planowanie ekspozycji sklepowej, w taki sposób, aby zwiększała sprzedaż. Chodzi np. o ustawianie produktów, które cieszą się największym zainteresowaniem w najbardziej wyeksponowanych punktach w sklepie, aby konsumenci mieli pewność, że z łatwością znajdą w nim ulubione rzeczy lub zwrócenie szczególnej uwagi klientów na ten asortyment, który „gorzej się sprzedaje”, by zachęcić odwiedzających sklep do jego zakupu.
  5. Ograniczenie strat finansowych z powodu kradzieży. System czujników i kamer, w który wyposażony jest sklep, pomagający analizować reakcje klientów, pozwala również na wyeliminowanie podejrzanych zachowań, czyli po prostu rozpoznać złodzieja.

Analiza zachowania i zwyczajów zakupowych klientów branży retail pozwala na uzyskanie wartościowych informacji, które nie są oparte na założeniach, ale na wskaźnikach, które posiadają odzwierciedlenie w rzeczywistości i realnie przekładają się na zwiększenie sprzedaży, czy umożliwiają optymalizację kosztów prowadzenia biznesu. W tej sytuacji wygranymi są również konsumenci.
– Analiza informacji uzyskanych o konsumentach jest już powszechnie wykorzystywana do przygotowywania dla nich oferty handlowej „skrojonej na miarę”. To sygnał, że dana marka myśli o potrzebach swoich klientów. O tym, jak jest to istotna kwestia, przekonał się każdy, kto wyszedł ze sklepu rozczarowany, nie mogąc dokonać zakupu, z powodu braku asortymentu, który opowiadałby określonym oczekiwaniom – komentuje Krzysztof Grabowski, ekspert ds. technologii.
Przeczytaj także: 9 trendów e-commerce na 2022 9 trendów e-commerce na 2022

oprac. : eGospodarka.pl eGospodarka.pl

Przeczytaj także

Skomentuj artykuł Opcja dostępna dla zalogowanych użytkowników - ZALOGUJ SIĘ / ZAREJESTRUJ SIĘ

Komentarze (0)

DODAJ SWÓJ KOMENTARZ

Eksperci egospodarka.pl

1 1 1

Wpisz nazwę miasta, dla którego chcesz znaleźć jednostkę ZUS.

Wzory dokumentów

Bezpłatne wzory dokumentów i formularzy.
Wyszukaj i pobierz za darmo: